🧠 Neuraxon Network Builder

By David Vivancos & Jose Sanchez - Qubic Science

Build Your Bio-Inspired Neural Network based on Neuraxon paper & Qubic's Aigarth Intelligent Tissue
Configure all parameters using the sliders below, then click "Build Network" to create and visualize your custom Neuraxon network with trinary states, continuous processing, and complex synaptic dynamics.

πŸ“ Network Identity & Management

Name used for saving/loading parameters.

πŸ—οΈ Network Architecture

Number of input neurons (1-5)
3
Number of hidden neurons (1-100)
40
Number of output neurons (1-5)
3
Probability of synapse formation between neurons (0.0-0.20)
0.05

⚑ Neuron Parameters

Time constant for membrane potential decay (5.0-50.0)
20.0
Firing threshold for excitatory state (+1) (0.5-2.0)
1.0
Firing threshold for inhibitory state (-1) (-2.0 to -0.5)
-1.0
Rate of neuronal adaptation (0.0-0.2)
0.05
Probability of spontaneous activity (0.0-0.1)
0.01
Rate of neuron health decay without activity (0.0-0.01)
0.001

πŸ”— Synapse Parameters

Fast Ionotropic (AMPA-like)

5.0
-1.0
1.0

Slow Ionotropic (NMDA-like)

50.0
-0.5
0.5

Metabotropic

1000.0
-0.3
0.3

🌱 Plasticity Parameters

Synaptic plasticity learning rate (0.0-0.1)
0.01
Spike-timing-dependent plasticity window (10.0-50.0)
20.0
Minimum integrity for synapse survival (0.0-0.5)
0.1
Probability of new synapse formation (0.0-0.2)
0.05
Probability of synapse removal (0.0-0.1)
0.01
Health threshold for neuron death (0.0-0.3)
0.1

πŸ§ͺ Neuromodulator Parameters

0.1
0.1
0.1
0.1
Rate of neuromodulator decay (0.0-0.5)
0.1

⏱️ Simulation Parameters

Simulation time step (0.1-10.0)
1.0
Number of initial simulation steps (1-10000)
100
Neuraxon Network
Name:
Neurons: 0
Synapses: 0
Modulators: 0
Time: 0 ms
Steps: 0

🧠 Neuraxon Controls

Input Neurons

Simulation

Neuromodulators

Legend
Input (Box)
Hidden (Sphere)
Output (Cone)
Excitatory Synapse
Inhibitory Synapse
πŸŽ―πŸ˜ŠπŸ’‘βš‘ Neuromodulators (moving along synapses)
Building Neuraxon Network...